1. Find the length and foot of perpendicular draw from the point $(2,-1,5)$ to line $\frac{x-11}{10}=\frac{y+2}{-4}=\frac{z+8}{-11}$.
2. Find the point on the line $\frac{x+2}{3}=\frac{y+1}{2}=\frac{z-3}{2}$ at a distance $3 \sqrt{2}$ from the point $(1,2,3)$.
3. Show that the lines $\frac{x-1}{3}=\frac{y+1}{2}=\frac{z-1}{5}$ and $\frac{x+2}{4}=\frac{y-1}{3}=\frac{z+1}{-2}$ do not intersect.
4. Find the equations of two lines through the origin which intersect the line $\frac{x-3}{2}=\frac{y-3}{1}=\frac{z}{1}$ at angles of $\frac{\pi}{3}$.
5. Vertices B and C of $\triangle A B C$ lie along the line $\frac{x+2}{2}=\frac{y-1}{1}=\frac{z-0}{4}$. Find the area of the triangle given that A has coordinates $(1,-1,2)$ and line segment $B C$ has length 5.
6. A line makes angles $\alpha, \beta, \gamma, \delta$ with the four diagonals of a cube, prove that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta$ $=\frac{4}{3}$.
7. The points $A(4,5,10) B(2,3,4)$ and $C(1,2,-1)$ are there vertices of a parallelogram $A B C D$. Find the vector equations of the sides $A B$ and $B C$ and also find the coordinates of point D.
8. A line with direction ratios $<2,1,2>$ meets each of the lines given by the equations $x=y+a=z$ and $x+a$ $=2 y=2 z$. Find the coordinates of each of these points of intersection.
9. The Cartesian equations of a line are $6 x-2=3 y+1=2 z-2$. Find its direction ratios and also find vector equation of the line.
10. Find the equation of the line passing through $\mathrm{P}(-1,3,-2)$ and perpendicular to the lines $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ and $\frac{x+2}{-3}=\frac{y-1}{2}=\frac{z+1}{5}$.
11. Find the condition that the lines $x=a y+b, z=c y+d$ and $x=a^{\prime} y+b^{\prime}, z=c^{\prime} y+d^{\prime}$ may be perpendicular to each other.
12. Find the point on the line $\frac{x+2}{3}=\frac{y+1}{2}=\frac{z-3}{2}$ at a distance 5 units from the point $P(1,2,3)$.
13. Find the foot of perpendicular from the point $P(1,2,3)$ on the line $\frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2}$. Also obtain the equation and the length of perpendicular.
14. Find the equation of the line passing which intersect the lines $\frac{x-1}{2}=\frac{y-2}{2}=\frac{z-3}{4}$ and $\frac{x+2}{1}=\frac{y-3}{2}=\frac{z+1}{4}$ and passes through the point $(1,1,1)$.
15. Show that the angles between the diagonals of a cube is $\cos ^{-1}\left(\frac{1}{3}\right)$.
16. Find the equations of the lines intersecting the lines $\frac{x}{1}=\frac{y+a}{1}=\frac{z}{1}$ and parallel to the lines $\frac{x-a}{2}=\frac{y+a}{1}=\frac{z-2 a}{2}$
17. Find the shortest distance between the following pairs of lines and hence write whether the lines are intersecting or not $\frac{x-1}{2}=\frac{y+1}{3}=z, \frac{x+1}{5}=\frac{y-2}{1} ; \mathrm{z}=2$
18. Find the angles between the lines whose distance cosine are given by the equations $31+m+5 n=0$, $6 m n-2 n l+5 l m=0$
19. Find the foot of perpendicular drawn from the point $2 \hat{\imath}-\hat{\jmath}+5 \hat{k}$ to the line $\vec{r}=(11 \hat{\imath}-2 \hat{\jmath}-8 \hat{k})+$ $\lambda(10 \hat{\imath}-4 \hat{\jmath}-11 \hat{k})$
20. Find the points on the line through the points $A(1,2,3)$ and $B(3,5,9)$ at a distance of 14 units from te mid-point of segment $A B$.

ANSWERS

1. Length $=\sqrt{14}$ units, foot of perpendicular is $(1,2,3)$
2. Required point on the line is $(-2,-1,3)$ or $\left(\frac{56}{17}, \frac{43}{17}, \frac{11}{17}\right)$
3. Required line are : $\frac{x}{1}=\frac{y}{2}=\frac{z}{-1}$ and $\frac{x}{-1}=\frac{y}{1}=\frac{z}{-2}$
4. $\sqrt{\frac{1775}{28}}$ sq. units
5. Equation of line $\mathrm{AB}: \vec{b}=(4 \hat{\imath}+5 \hat{\jmath}+10 \hat{k})+\lambda(2 \hat{\imath}+2 \hat{\jmath}+6 \hat{k})$

Equation of line $B C: \vec{d}=(2 \hat{\imath}+3 \hat{\jmath}+4 \hat{k})+\mu(\hat{\imath}+\hat{\jmath}+5 \hat{k})$
Coordinates of D are $(3,4,5)$
8. the points are $(3 a, 2 a, 3 a)$ and $Q(a, a, a)$
9. $\vec{r}=\left(\frac{1}{3} \hat{\imath}-\frac{1}{3} \hat{\jmath}+\hat{k}\right)+\lambda(2 \hat{\imath}+2 \hat{\jmath}+6 \hat{k})$
10. Required Equation is : $\frac{x+1}{4}=\frac{y-3}{-14}=\frac{z+2}{8}$ or $\frac{x+1}{2}=\frac{y-3}{-7}=\frac{z+2}{4}$
11. a. $a^{\prime}+1.1+c . c^{\prime}=0$ iff $a a^{\prime}+c c^{\prime}+1=0$
12. the required points are $(-2,-1,3)$ for $\mu=0$ and $(4,3,7)$ for $\mu=2$
13. length of perpendicular= 7 units
14. Equation of line is $\frac{x-1}{3}=\frac{y-1}{10}=\frac{z-1}{17}$
16. Equation of line is $\frac{x-a}{2}=\frac{y-a}{1}=\frac{z-a}{2}$
17. $\frac{9}{\sqrt{195}}$ units
18. $\theta=\cos ^{-1}\left(\frac{1}{6}\right)$
19. $\sqrt{14}$
20. The Required points are $\left(6, \frac{19}{2}, 18\right)$ And ($-2,-\frac{5}{2},-6$)

Assignment -2 (NCERT Exercise 11.2-Equation Of A Plane In Normal Form , Intercept Of The Equation)

1. Find the equation of the plane passing through the point $(2,1,0),(3,-2,-2)$ and $(3,1,7)$
2. A Plane meets the coordinate axes in A, B, C such that the centroid of triangle $A B C$ is the point (p, q, r). show that the equation of the plane is $\frac{x}{p}+\frac{y}{q}+\frac{z}{r}=3$
3. Find the equation of the perpendicular drawn from the point $(1,-2,3)$ to the plane $2 x-3 y+4 z+9=0$. Also , Find the coordinates of the foot of the perpendicular.
4. Find the coordinates of the points where the line through $(3,-4,-5)$ and $(2,-3,1)$ crosses the plane determined by points $A(1,2,3), B(2,2,1)$ and $C(-1,3,6)$.
5. If from a point $P(a, b, c)$ perpendicular $P A$ and $P B$ are drawn to $y z$ and $z x$-planes, find the vector equation of the plane OAB
6. Reduce the equation of the plane $3 x+4 y-z+7=0$ in the normal form and hence find its distance from origin.
7. Find the distance of the point $A(-2,3,-4)$ from the line $\frac{x+2}{3}=\frac{2 y+3}{4}=\frac{3 z+4}{5}$ measured parallel to the plane $4 x+12 y-3 z+1=0$
8. A Variable plane moves in such a way that the sum of the reciprocals of its intercepts on the three coordinates axes is constant. Show that the plane passes through a fixed point.
9. Find the length and the foot of perpendicular from the point $(1,1,2)$ to the plane $2 x-2 y+4 z+5=0$
10. The foot of perpendicular drawn from the origin to the plane is $(4,-2,-5)$. Find the equation of the plane.
11. The position vectors of two points A and B are $3 \hat{\imath}+\hat{\jmath}+2 \hat{k}$ and $\hat{\imath}-2 \hat{\jmath}-4 \hat{k}$ respectively. Find the vector equation of the plane passing through B and perpendicular to the vector $\overrightarrow{A B}$.
12. Find the distance of the point $(1,-2,3)$ from the plane $x-y+z=5$ measured along a line parallel to $\frac{x}{2}=\frac{y}{3}=$ $\frac{z}{-6}$
13. Find the distance of the point $(-1,-5,-10)$ from the point of intersection of the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$ and the plane $x-y+z=5$
14. Find the equation of the plane passing through the point $(-1,2,1)$ and perpendicular to the line joining the points $(-3,1,2)$ and $(2,3,4)$. Find also the perpendicular distance of the origin from this plane
15. A Vector \vec{n} of magnitude 8 units is inclined to the x - axis at $45^{\circ}, y$-axis at 60° and an acute angle with z - axis .if a plane passes through a point $(\sqrt{2},-1,1)$ and is normal to \vec{n}. Find its equation in vector form.
16. $21 x+9 y-3 z-51=0$
17. Equation of perpendicular is $\frac{x-1}{2}=\frac{y+2}{-3}=\frac{z-3}{4}=\lambda$ and Coordinates are $(-1,1,-1)$
18. Coordinates are $(1,-2,7)$
19. Equation of plane is : $\vec{r} .(b c \hat{\imath}+c a \hat{\jmath}-a b \hat{k})=0$
20. $\frac{7}{\sqrt{26}}$.
21. $\frac{17}{2}$
22. $\frac{13}{12} \sqrt{6}$ units
23. $4 x-2 y-5 z=45$ is the required equation of the plane
24. $\vec{r} \cdot(2 \hat{\imath}+3 \hat{\jmath}+6 \hat{k})=0$
25. 1 units
26. 13
27. $\frac{7}{\sqrt{33}}$
28. $\vec{r} \cdot(\sqrt{2} \hat{\imath}+\hat{\jmath}+\hat{k})=2$

Assignments-3

(NCERT Exercise 11.3 -Angle Between Two Planes,Coplanarity Of Two Lines)

1. If the line $\vec{r}=(\hat{\imath}-2 \hat{\jmath}+\hat{k})+\lambda(2 \hat{\imath}+\hat{\jmath}+2 \hat{k})$ is parallel to the plane \vec{r}. $(3 \hat{\imath}-2 \hat{\jmath}+m \hat{k})=14$, find the value of m
2. Show that the line $\vec{r}=(\hat{\imath}+\hat{\jmath})+\lambda(2 \hat{\imath}+\hat{\jmath}+4 \hat{k})$ lies on the plane $\vec{r} .(\hat{\imath}+2 \hat{\jmath}-\hat{k})=3$
3. Find the angle between the line $\frac{x+1}{3}=\frac{y-1}{2}=\frac{z-2}{4}$ and the plane $2 x+y-3 z=0$
4. Find the length and foot of the perpendicular from the point $(7,14,5)$ to the plane $2 x+4 y-z=2$
5. Find the equation of the plane passing through the intersection of the planes $2 x-3 y+z-4=0$ and $x-y+z+1=0$ and perpendicular to the plane $x+2 y-3 z+6=0$
6. Find the equation of the plane passing through the intersection of the planes $\vec{r} \cdot(\hat{\imath}+\hat{\jmath}+\hat{k})=1$ and $\vec{r} .(2 \hat{\imath}+3 \hat{\jmath}-\hat{k})+4=0$ and parallel to x-axis.
7. Find the equation of the plane passing through the point $2 \hat{\imath}-\hat{k}$ and parallel to the lines $\frac{x}{-3}=\frac{y-2}{4}=z+1$ and $x-4=\frac{1-y}{2}=2 z$
8. Find the vector equation of the plane passing through the point $\hat{\imath}+\hat{\jmath}-2 \hat{k}, 2 \hat{\imath}-\hat{\jmath}+\hat{k}$ and $(\hat{\imath}+2 \hat{\jmath}+\hat{k})$
9. Find the equation in Cartesian form as well as vector equation of a plane passing through the point $(3,-3,1)$ and normal to the line passing through the points $(3,4,-1)$ and $(2,-1,5)$
10. Find the equation of the plane through the line of intersection of $\vec{r} .(2 \hat{\imath}-3 \hat{\jmath}+4 \hat{k})=1$ and \vec{r}. $(\hat{\imath}-\hat{\jmath})+$ $4=0$ and perpendicular to \vec{r}. $(2 \hat{\imath}-\hat{\jmath}+\hat{k})+8=0$
11. Find the equation of the plane passing through the line of intersection of the planes $x+2 y+3 z-5=0$ and $3 x-2 y-z+1=0$ and cutting off equal intercepts on x-axis and z-axis
12. If from a point $P(a, b, c)$ perpendiculars $P A$ and $P B$ are drawn to $y z$ and $z x$ planes, then find the vector equation of the plane $O A B$.
13. Find the plane passing through $(4,-1,2)$ and parallel to the lines $\frac{x+2}{3}=\frac{y-2}{-1}=\frac{z+1}{2}$ and $\frac{x-2}{1}=\frac{y-3}{2}=\frac{z-4}{3}$
14. Find the direction ratio of the normal to the plane passing through the point $(2,1,3)$ and the line of intersection of the planes $x+2 y+z=3$ and $2 x-y-z=5$
15. Find the equation of the two planes passing through the points $(0,4,-3)$ and $(6,-4,3)$ if the sum of their intercepts on the three axe is zero.
16. A straight line passes through the point $(2,-1,-1)$. It is parallel to the plane $4 x+y+z+2=0$ and is perpendicular to the line $\frac{x}{1}=\frac{y}{-2}=\frac{z-5}{1}$. find its equation.
17. A variable plane is at a constant distance p from the origin and meets the coordinates axes in A, B, C. Show that the locus of the centroid of the tetrahedron OABC is $x^{-2}+y^{-2}+z^{-2}=16 p^{-2}$
18. Find the vector and Cartesian equation of the plane containing the two lines $\vec{r}=(2 \hat{\imath}+\hat{\jmath}-3 \hat{k})+l(\hat{\imath}+2 \hat{\jmath}+5 \hat{k})$ and $\vec{r}=(\widehat{3 \imath}+3 \hat{\jmath}+2 \hat{k})+m(3 \hat{\imath}-2 \hat{\jmath}+5 \hat{k})$
19. Find the distance of the point $\mathrm{P}(\hat{\imath}+\hat{\jmath}+\hat{k})$ from the plane through the points $\mathrm{A}(2 \hat{\imath}+\hat{\jmath}+\hat{k})$, $\mathrm{B}(\hat{\imath}+2 \hat{\jmath}+\hat{k})$ and $\mathrm{C}(\hat{\imath}+\hat{\jmath}+2 \hat{k})$. Also, Find the position vector of the foot of perpendicular from P on this plane.
20. $\mathrm{m}=-2$
21. $\theta=\sin ^{-1}\left(\frac{-4}{\sqrt{406}}\right)$
22. $3 \sqrt{21}$
23. $x-5 y-3 z-23=0$ is the required equation of the plane
24. $\vec{r} \cdot(-\hat{\jmath}+3 \hat{k})=6$ is the required equation of the plane
25. $\vec{r} \cdot(8 \hat{\imath}+5 \hat{\jmath}+4 \hat{k})-12=0$ is the required vector equation
26. $\vec{r} \cdot(9 \hat{\imath}+3 \hat{\jmath}-\hat{k})=14$
27. $-x-5 y+6 z=180 r x+5 y-6 z+18=0$ is the required Cartesian form
28. $\vec{r} \cdot(-5 \hat{\imath}+2 \hat{\jmath}+12 \hat{k})=47$
29. $5 x+2 y+5 z-9=0$
30. Equation of plane is $: \vec{r} \cdot(b c \hat{\imath}+c a \hat{\jmath}-a b \hat{k})=0$
31. $x+y-z-1=0$
32. direction ratio of normal to this plane are proportional to $13,6,1$
33. $6 x+3 y-2 z=18$ or $2 x-3 y-6 z=6$
34. $\frac{x-2}{1}=\frac{y+1}{-1}=\frac{z+1}{-3}$
35. Vector equation of plane is $\vec{r} \cdot(10 \hat{\imath}+5 \hat{\jmath}-4 \hat{k})=37$ and Cartesian equation is $10 x+5 y-4 z=37$
36. Distance of the point $P=\frac{1}{\sqrt{3}}$

Position Vector of N are $\frac{4}{3}(\hat{\imath}+\hat{\jmath}+\hat{k})$

